Optically active cyclopropanols from the enzymatic resolution of dimethyl α -alkylsuccinates. Synthesis of chiral 2-vinylcyclobutanones and cyclohexenones.

Jacques SALAUN* and Belkacem KARKOUR

Laboratoire des Carbocycles (Associe au CNRS), Institut de Chimie Moleculaire d'Orsay Universite de Paris Sud, Bat. 420, 91405 ORSAY (France)

Abstract. (+)-(R) [or (-)-(S)] dimethyl α -methylsuccinates, obtained by the enantioselective hydrolysis of the racemic diester by porcine pancreatic lipase, undergo acyloin cyclization followed by stereoselective ring contraction to provide I-alkenylcyclopropanols with high enantiomeric excesses.

The cyclopropane ring not only constitutes an attractive synthon involved in many useful chemical transformations $\frac{1}{1}$ but is also present in a large number of natural products $\frac{2}{1}$. Recent approaches to optically active cyclopropanes involve separation of diastereoisomers $\overset{3}{\cdot}$ enantioselec[.] enzymatic hydrolysis⁴, stereospecific cyclopropanation of chiral precursors ⁵, stereocontrol cyclization of chiral esters ⁶, ring contraction of a cyclobutanol prepared from natural $(+)$ α -pinene⁷, addition of the α -carbanion of (R_{ς}) -(+)sulfinylcyclopropane ⁸.

We have previously shown that I-hydroxycyclopropanecarboxaldehyde derivatives provide convenient keystones for the construction of four-, five- and eight-membered ring moieties leading to jasmonoid and spirovetivane derivatives, to dicranenone A, methylenomycin B and precapnelladiene⁹. We report herein the first synthesis of optically active cyclopropanols from racemic dimethyl α -methyl succinates.

(+)-(R) Dimethyl 2-methylsuccinate <u>2</u> is now readily available on a preparative scale and with high optical purity ($>$ 95% ee) from the enantioselective hydrolysis of the racemic ester <u>I</u> by porcine pancreatic lipase (PPL) ; its enantiomer (-)-(S)- $\underline{3b}$ (>96% ee) was obtained after esterification II of the half ester (-)-(S)- $3a^{10}$. Acyloin cyclization of (+)-(R)-2 by sodium in the presence of ClSiMe₃¹ provided the (+)-(R)-3-methyl-1,2-disiloxycyclobutene $4 \times (\alpha)_{n}^{20}$ = +21°, c 2.78, CCl₄); while acyloin cyclization of (-)-(S)- $\underline{3b}$ led to the enantiomer (-)-(S)- $\underline{4}$ ([α] $_0^{20}$ = -22°, c 2.82, CCl₄) in 78% yield. Bromination of (+)-(R)-4 at -20°C in CCl, gave the labile (R)-(+)-3-methyl-1,2-cyclobutanedione 2^{12} ; on the other hand, successive additions of bromine at -50°C in pentane and of a 2M NaOH aqueous solution at 0° C 1^{μ} led, after acidification (2M HCI), essentially to the (-)-(IS,2R) l-hydroxy-2methylcyclopropanecarboxylic acid <u>6a</u> and after esterification (MeOH, SOCl₂, reflux) to the (-)-(IS,2R methyl ester 6b, in 98% yield.

From chemical and spectroscopic data, it has been claimed that the ring contraction of $\frac{1}{2}$ gave the hydroxyacid <u>6a</u> with <u>exo</u>-configuration of the carboxy group, <u>exclusively</u> 14 . However gas chromatography, mass spectroscopy and n.m.r. examination of the product of the reaction (R)-4- (IS,2R)-<u>6b</u> evidenced the formation of \sim 5% of the diastereoisomer (IR,2R)-<u>7</u> (diastereose vity 95:5). Recrystallization of the acid (IS,2R)-6a $^{\overline{15}}$ allowed, after esterification, the obtention of the stereochemically pure ester (–)–(1S,2R)–6b $^\mathrm{16}$. Moreover the optical purity of this hydroxyes easily determined by comparison of its n.m.r spectra (250 MHz) recorded in the presence of chiral Eu(hfc)₃ with those of racemic $6b$ (prepared from racemic succinate 1 , following the same procedure), was superior to 94% (\gt 97%, from recrystallized acid (IS,2R)-<u>6a</u>). In the same way, ring contract of the disiloxycyclobutene (-)-(S)-4 provided the (+)-(IR,2S) hydroxy acid 8a and after esterification the (+)-(IR,2S) hydroxy ester 8b, with 95% ee 17 .

It is worthy of note that the chirality of the stereocenter was not affected during the sodium induced acyloin cyclization of the enolizable α -methyl succinates (R)-2 and (S)-3b involving the intermediacy of radical-anions 11 as well as during the base-induced ring contraction of the brominat products of the (R)- and (S)-3-methyl-l,2-disiloxycyclobutenes $\frac{\mu}{2}$, i.e., the (R)- and (S)-3-methyl-l,2cyclobutanediones 5.

Such a comparable chiral stability has been recently reported for the reductive transformation of methyl-(S)- β -bromoisobutyrate leading, via its sodium homoenolate, to a I:1 diastereomeric mixture of I-methoxy-2-methyl-l-trimethylsiloxycyclopropanes, which, upon bromination (O"C), were transformed back to the starting bromide without loss of optical purity $^{18}.$

It must be underlined that PPL-induced hydrolysis of the racemic hydroxyester 6b, following the reported procedure 10 , provided (IS,2R)-<u>6b</u> with 6.5% e.e., only

Silylation (CISitBuMe₂, DMF, imidazole, 35°C) of the hydroxyester (-)-(IS,2R)-6b, then reduction (DIBAH, toluene, -70°C) followed by oxidation (DMSO-(COCl)₂), led to the chiral (-)-(lS,2 cyclopropanecarboxaldehyde 9 $^\circ$ (94% overall yield). Wittig reaction ((MeO)₂P(O)CH₂CO₂Me, THF n-BuLi, 20°C) gave the ethyl E- α , β -unsaturated carboxylate 10 (96% yield). Upon treatment with methanol and CISiMe₃ (catalytic) at 40°C for 24 hr the vinylcyclopropane (IS,2R)-10 underwent quantitative $C_3 \longrightarrow C_4$ ring enlargement into a 70/30 regiomeric mixture of 3-methyl- 12 and 4-methyl-2(carbomethoxymethyl)cyclobutanones $\frac{13}{12}$, as evidenced by n.m.r. double irradiation $\frac{20}{12}$. On the other hand, reduction (DIBAH, toluene, -78°C) of the chiral ester 10 gave the allylic alcohol (-)-(1S,2R)-<u>11</u> which, upon treatment with BF₃, Et₂O (catalytic, CHCl₃) underwent regioselec $C_3 \longrightarrow C_4$ ring enlargement into the (+)-(2R,3R)-3-methyl-2-vinylcyclobutanone $\underline{14}$ exclusively, as evidenced from chromatographic and spectroscopic data ²¹. Reduction (LiAIH_n, ether, reflux, 30 mn) gave a 63:37 mixture of isomeric cyclobutanols (+)-(2S,3R) 15 which, upon treatment with KH (I equiv.) in THF at reflux for 1 hr underwent total $C_4 \longrightarrow C_6$ ring enlargement ²² into the 5-meth
cyclobex 3 on Lols 16, ²³ Quidation with Japan research and treatment of the provision are such a cyclohex-3-en-1-ols 16^{23} . Oxidation with Jones reagent and treatment of the resulting non-conjugated enone with basic activity 3 alumina (5% ether in pentane) yielded the (+)-(S)-5-methyl cyclohex-2 en-l-one <u>I7</u> ([$\alpha]_{\rm D}$ = +81°, c 1.04, CHCl₃), with 91% optical purity ²⁴, after the overall transforma from racemic succinate 1. Synthetic applications of these highly stereoselective ring **rearrangements** are currently under investigation.

References

- 1. J. Salaün: Rearrangements involving the cyclopropyl group in "The Chemistry of the cyclopropyl group" chp. 12, Z. Rappoport ted.), London, New York, Sydney, Interscience Publishers, in press; J. Salaiin : Synthesis and synthetic applications of I- donor substituted cyclopropanes with Ethynyl, Vinyl and Carbonyl groups, <u>Top. Curr. Chem.</u>, in pres.
- 2. S. Beckmann and H. Geiger, <u>Methoden Org. Chem.</u>, (Houben-Weyl) 1971, 4, 445 ; H.H. Otto, <u>Dtsch</u> Apoth. Ztg., 1975, <u>115,</u> 89 ; C. Tarchini, M. Rohmer and C. Djerassi, <u>Helv. Chim. Acta</u>, 1979 62, 1210 ; D.G. Müller, M.N. Clayton, G. Gassmann, W. Boland, F.J. Marner and L. Jachici

Experientia, 1984, 40, 211 ; D.G. Müller, M.N. Clayton, G. Gassmann, W. Boland, F.G. Marner, T. Scholten and L. Jaenicke, Naturwissenschaften, 1985, 2, 97 ; D. Arlt, M. Jantelat and R. Lantzsch, Angew. chem., 1981, 93, 719 ; Angew. Chem. Int. Ed. Engl., 1981, 20, 703.

- **3. T. Schotten, W. Boland and L. Jaenicke, Helv. Chim. Acta, 1985, 68, 1186.**
- **4. M. Schneider, N. Engel and H. Boensmann, Angew. Chem. Int. Ed., 1984, 23, 64.**
- **5. H.** Abdallah, R. Grée and R. Carrié, <u>Tetrahedron Lett.</u>, 1982, <u>23</u>, 503 ; M. Franck-Neum، **M. Sedrati, J.P. Vigneron and V. Bloy, Angew. Chem. Int. Ed. Engl., 1985, E, 996** ; **A. Misumi, K. Iwanaga, K. Furuta and H. Yamamoto, J. Am. Chem. Sot., 1985, 107, 3343** ; **A.** Mori, I. Arai and H. Yamamoto, <u>Tetrahedron Lett.,</u> 1986, <u>42</u>, 6447
- **6.** F. Colobert and J.P. Genet, Tetrahedron Lett., 1985, 2&, 2779 ; **D.** Dorsch, E. Kunz and G. Helmchen <u>Tetrahedron Lett.</u>, 1985, <u>26</u>, 3319 ; G. Quinkert, U. Schwartz, H. Stark, W.D. Weber
F. Adam, H. Baier, G. Frank, G. Dürner, <u>Liebigs Ann. Chem</u>., 1982, 1999 ; G. Quinkert, H.G **Schmatz, E. Watzer, S. Gross, G. Dijrner and J.W. Bats, Angews Chem. Int. Ed.** Engl., 1986, 2, 732.
- **7.** M. Karpf and C. Djerassi, J. Am. Chem. Soc., 1981, 103, 302.
- **8.** K. Hiroi, H. Nakamura and T. Anzai, J. Am. Chem. Soc., 1987, 109, 1249.
- **9.** a) J. Salaün and Y. Almirantis, <u>Tetrahedron</u>, 1983, <u>39,</u> 2421 ; b) J. Ollivier and J. Salaür **Tetrahedron Lett., 1984, 2, 1269** ; c) J.P. Barnier and J. Salatin, Tetrahedron Lett., 1984, E, 1273 ; **d)** J. Ollivier and J. Salatin, Chem. Comm., 1985, 1269 ; e) J.P. Barnier, B. Karkour and J. Salaun, Chem. Comm., 1985, 1270 ; f) J.P. **Barnier and J. Salatin, to be published.**
- **10.** E. Guibé-Jampel, G. Rousseau and J. Salaün, Chem. Comm., 1987, in press.
- **II.** K. Rühlmann, H. Seefluth and H. Becker, Chem. Ber., 1967, 3820 ; K. Rühlmann, Synthesis, 1971, 236 ; J.J. Bloomfield and J.M. Nelke, Org. Syntheses, 1977, 52, I.
- **12.** IR (CCl $_4$) (cm-l) : 1775 and 1800 (γ C = O) ; NMR $\,$ lH (CCl $_4$, δ ppm) 1.25 (d, J = 6.7 Hz, 3H); 2.30 - 3.35 (m, 3H) ; ¹³C (CDC13,**ò**ppm) 214.4, 208.2, 50.6, 49.2, 15.5 ; MS (e/m) M⁺ 98 (3.5% Contrary to the parent 1,2-cyclobutanedione (m.p. 65° C) 13 (R)- $\bar{2}$ is an unstable liquid whic was not isolate
- **13.** J.M. **Denis and J.M.** Conia, Tetrahedron Lett., 1971, 2845 ; J.M. Denis, J. Champion and J.M. **Conia, Org. Syntheses, 1981, 60, 180.**
- **14.** H.G. **Heine and D. Wendisch, Justus Liebigs Ann.** Chem., 1976, 463.
- **15.** M.p. 75°C (ether-hexane), lit. (¹⁴) m.p. of the racemic <u>6a</u> 64-65°C (xylene); [α]_D = -57°, c 1.51, $CHCI₃$.
- **16.** B.p. 74°C/15 mm., lit., (14) 87°C/20 mm; $[\alpha]_D = -41^\circ$, c 2.95, CCl₄.
- **17.** In the presence of chiral Eu(hfc)₃ (40% w/w) the methyl ester signal of (=) <u>6b</u> was decouplec
into two equal singlets ; while (1S,2R)–<u>6b</u> showed mainly a methyl ester singlet (ratios 97: from crude $\frac{6a}{2}$ and 98.5:1.5 from recrystallized <u>6a</u>), and (IR,2S)-<u>8b</u> mainly the other single (ratio 2.5:97.5).
- **1X.** E. Nakamura, K. Sekiya and I. Kuwajima, Tetrahedron Lett., 1987, 28, 337.
- **19.** $\lbrack \alpha \rbrack$ _D = -45°, c 2.37, CHCl₃. When prepared from unrecrystallized 6a, n.m.r. spectra evidenced two diastereomeric aldehydic protons (ratio 96:4) at δ 9.0 and 9.4 ppm, respectively.
- **20.** Upon complexation with chiral Eu(hfc)₃, the methyl ester signals of 14 and 15 were decoupled showing, by comparison with the racemic compounds, high enantiomeric purities.
- **21.** $[\alpha]_{\rm D}$ = +68°, c 0.99, CHCl $_{\rm 3}$; IR (CDCl $_{\rm 3})$ (cm $^{-1}$) 1780 (γ C=O), 1640 (250 MHz) (ppm) I.15 (d, J = 4 Hz, 3H), 2,50 (dq, 2J (γ C=C); NMR δ (CDC 2.2 Hz, IH) ppm) 1.15 (d, J = 4 Hz, 3H), 2,50 (dq, 4] = 17.15 Hz, 3Jtrans = 4.22 Hz, 4Jcis =
; 2.72 (m, lH), 3.25 (qd, 23 = 17.15 Hz, 3Jcis = 9.15 Hz, 4Jtrans = 2.8 Hz, lH) ; 3.98 (m, IH); 5.25 (m, 2H) ; 5.72 (m, IH). MS (e/m) : IIO (M⁺, I.6), 82 (7), 42 (IO), 68 (M- C₂H₂(100).
- **22.** Th. Cohen, M. Bhupathy, J.R. Matz, J. Am. Chem. Soc., 1983, 105, 520.
- **23.** Two stereoisomers as evidenced from n.m.r. spectra.
- **24.** By comparison with the optical rotation $([\alpha]_D = -90^\circ)$ of $(-)$ - (R) - $\frac{17}{10}$ prepared from $(+)$ pulegone: N.L. Allinger and C.K. Riew, <u>J. Org. Chem.</u>, 1975, <u>40</u>, 1316 ; W. Oppolzer and M. Petrzil Helv. Chim. Acta, 1978, 61, 2756 ; D. Liotta, G. Lima and M. Saindane, J. Org. chem., 1982 $\frac{47}{1258}$.

(Received in France 10 June 1987)